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ABSTRACT :- 

A detailed study by Godfrey Harold Hardy ( 1877 − 1947) and Srinivasa Ramanujan(1887 −

 1920) showed         𝑃(𝑗) ≈
1

4√3𝑗
𝑒𝜋√2/3 √𝑗  

This approximation was made exact by Hans Rademacher(1892 −  1969) , who found an 

expansion that, when rounded to the nearest integer, gives 𝑃(𝑗)  The next natural question is 

actually easier than the previous one, and is also due to De Movie. 

INTRODUCTION-: 

The number of partitions of 𝑗 into exactly 𝑟 parts where order counts is 

(
𝑗 − 1
𝑟 − 1

) 

Example 

The partitions of  7 into four parts are 

4+1+1+1        3+2+1+1     2 + 3 +  1 + 1  1+3+2+1      2+2+2+1 

1 +4+1+1       3 + 1 + 2 + 1    2 + 1 + 3 +  1    1 + 3 + 1 + 2    2 + 2 + 1 + 2 

1 + 1 + 4 + 1     3+1+1+2     2 + 1 + 1 + 3   1+2+3+1   2 +  1 + 2 + 2    1 + 1 + 1 + 4     

1+1+3+2    1 + 1 + 2 + 3 

There are 20 = (
4
3

) of them. 

Proof 1 

To each partition 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑟 we associate the sequence of partial sums 

𝑠1 = 𝑎1 

𝑠2 = 𝑎 1 + 𝑎2 

𝑠3 = 𝑎 1 + 𝑎2 + 𝑎3 

𝑠𝑟 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑟 = 𝑗 

Every partition gives rise to one and only one set of partial sums. Also every set of 𝑠’s 
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0 < 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑟−1 < 𝑗 

determines one and only one partition. The number of partitions where order counts is therefore 

the number of ways of choosing the (𝑟 −  1)𝑠’s from the numbers { 1,2, ⋯ , 𝑗 − 1}, which is 

(
𝑗 − 1
𝑟 − 1

).  

Proof 2 

Let us restate this problem as one of putting 𝑗 identical balls in 𝑟 different boxes, so that no box 

remains empty. If we represent this situation by slashes and 𝑡’s we then intefpret the condition 

that no boxes remain empty as meaning that each slash (except for the end ones) must be 

between two 𝑡’𝑠. The 𝑟 boxes are demarked by 𝑟 + 1 slashes two of which are external. The 

(𝑟 −  1) internal slashes can be placed in any subset of the (𝑗 − 1) spaces between the 𝑗𝑡’𝑠. The 

number of ways of doing this is (
𝑗 − 1
𝑟 − 1

).  

Example 

|𝑡|𝑡𝑡|𝑡|𝑡𝑡𝑡|denotes six balls in four boxes. One in the first box, two in the second box, one in 

the third, and three in the last. It corresponds to 

𝑗 = 7 = 1 + 2 + 1 + 3 

Proof 3 

The generating function for the number of partitions of 𝑗 into exactly 𝑟 parts is 

𝐺(𝑡) = (𝑡 + 𝑡2 + 𝑡3 + ⋅ ⋅ ⋅)𝑟 

since we have eliminated the option of choosing 1 = 𝑡0 from each term. 

(𝑡 + 𝑡2 + 𝑡3 + ⋯ )𝑟 = 𝑡𝑟(1 + 𝑡2 + 𝑡3 + ⋯ )𝑟 

= 𝑡𝑟[(
𝑟 − 1

 0
) + (

𝑟
 1

) 𝑡 + (
𝑟 + 1

 1
) 𝑡2 + ⋯ ] 

The coefficient of 𝑡𝑗 in this product is just the coefficient of 𝑡𝑗−𝑟 in the bracketed series. This is 

(
𝑟 −  1 + (𝑗 − 𝑟)

(𝑗 − 𝑟)
) = (

𝑗 − 1
𝑗 − 1

) = (
𝑗 − 1
𝑟 − 1

) 

 

we will demonstrate that sometimes a recurrence relationship alone, without the recourse to 

generating functions, can be used to solve problems. We will consider a problem of Pierre 

Rémond de Montmort ( 1678 − 1719) , called “le problem des rencontres” 

           Let (𝑎1, 𝑎2, … , 𝑎𝑗) be a permutation of the numbers 1,2, ⋯, 𝑗 such that no element is back 
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in its original place, that is, 𝑎1 ≠ 1, 𝑎2 ≠ 2, 𝑎𝑗 ≠ 𝑗. Such a 

permutation is called a derangement. Let 𝐷𝑗 be the number of derangements of the set 

{ 1,2, ⋯ , 𝑗}. 

Example 

If we start with the 24 permutations of the numbers 1,2,3,4 and cross off all those with one in 

the first place, two in the second place, three in the third place, or four in the fourth place we 

have left these nine arrangements: 

2143        2341     2413 

                        3142     3412    3421 

                        4123     4312    4321 

Therefore, 𝐷4 = 9. 

Let 𝐷 13 = 1and 𝐷1 = 0. Let us distinguish two kinds of derangements. We know that 𝑎 1 sits 

in the first position; suppose that I sits in the 𝑎1 th position, that is, 𝑎 1 and  1 just changed 

places. The rest of the (𝑗 − 2) numbers must form a smaller derangement with each element 

moved from its initial posi tion. This can happen in 𝐷𝑗−2 ways. Since 𝑎1 itself can be chosen in 

(𝑗 − 1)ways the number of derangements of this kind is (𝑗 − 1)𝐷𝑗−2. We can now count the 

number of derangements in which 1 is not in the 𝑎1 th position. First we can choose 𝑎1 in (𝑗 −

 1) ways. Now add it to the front of any derangement of {2,3, … , 𝑗} in which we have replaced 

the 𝑎1 by 1. Since 𝑎1 was not in place 𝑎1 , I will not be in place 𝑎1. This process will produce 

all the derangements of the second kind. Clearly there are (𝑗 −  1)𝐷𝑗−1 of these Adding both 

together we find, 

𝐷𝑗 = (𝑗 −  1)𝐷𝑗−1 + (𝑗 −  1)𝐷𝑗−2 

Let us write this as, 

𝐷𝑗

𝑗!
=

𝑗 −  1

𝑗

𝐷𝑗−1

(𝑗 −  1)!
+

𝑗 − 1

𝑗(𝑗 − 1)

𝐷𝑗−2

(𝑗 − 2)!
 

We now introduce the notation 

𝐸𝑗 =
𝐷𝑗

𝑗!
    𝐸0 =  1    𝐸1 = 0 
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The 𝐸’s satisfy the recurrence relationship 

𝐸𝑗 = (1 −
1

𝑗
)𝐸𝑗−1 +

1

𝑗
𝐸𝑗−2 

Thís can be rewritten in the form, 

𝐸𝑗 − 𝐸𝑗−1 = (
− 1

𝑗
)(𝐸𝑗−1 − 𝐸𝑗−1) 

Reiterating this equation for (𝑗 −  1) instead of (n) we obtain the descent, 

=
1

𝑗
(

−1

𝑗 −  1
) (𝐸𝑗−2 − 𝐸𝑗−3) 

= (
− 1

𝑗
) (

− 1

𝑗 −  1
) (

− 1

𝑗 − 2
) (𝐸𝑗−3 − 𝐸𝑗−𝑡) 

=
(− 1)𝑗

𝑗!
 

We write this now in the form 

𝐸𝑗 =
(− 1)𝑗

𝑗!
+ 𝐸𝑗−1 

Reiterating this equation for (𝑗 −  1) instead of (n) gives us another descent, 

=
(− 1)𝑗

𝑗!
+

(−1)𝑗−1

(𝑗 − 1)!
+ 𝐸𝑗−2 

= (− 1)𝑗[
1

𝑗!
−

 1

(𝑗 − 1)!
+

1

(𝑗 − 2)!
 − + ⋯ ] 

And so we have proven, 

Theorem 30 

𝐷𝑗 = 𝑗! (1 −
1

1!
+

1

2!
−

1

3!
+ ⋯ ±

]

𝑗!
)    

Recall that 

𝑒−1 = 1 −
 1

1!
+

 1

2!
−

 1

3!
+ − ⋯ 

This means that 𝐷,, and 𝑗!/𝑒 differ by less than  1/(𝑗 +  1) and so 𝐷𝑗 is the closest integer to 

𝑗!/𝑒. 𝐹𝑜𝑟 any 𝑗 the probability that any given permutation is a derangement is very close to  1/𝑒. 
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